skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gouma, Pelagia-Irene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shahzad, Faisal (Ed.)
    Most research aimed at measuring biomarkers on the skin is only concerned with sensing chemicals in sweat using electrical signals, but these methods are not truly non-invasive nor non-intrusive because they require substantial amounts of sweat to get a reading. This project aims to create a truly non-invasive wearable sensor that continuously detects the gaseous acetone (a biomarker related to metabolic disorders) that ambiently comes out of the skin. Composite films of polyaniline and cellulose acetate, exhibiting chemo-mechanical actuation upon exposure to gaseous acetone, were tested in the headspaces above multiple solutions containing acetone, ethanol, and water to gauge response sensitivity, selectivity, and repeatability. The bending of the films in response to exposures to these environments was tracked by an automatic video processing code, which was found to out-perform an off-the-shelf deep neural network-based tracker. Using principal component analysis, we showed that the film bending is low dimensional with over 90% of the shape changes being captured with just two parameters. We constructed forward models to predict shape changes from the known exposure history and found that a linear model can explain 40% of the observed variance in film tip angle changes. We constructed inverse models, going from third order fits of shape changes to acetone concentrations where about 45% of the acetone variation and about 30% of ethanol variation are captured by linear models, and non-linear models did not perform substantially better. This suggests there is sufficient sensitivity and inherent selectivity of the films. These models, however, provide evidence for substantial hysteretic or long-time-scale responses of the PANI films, seemingly due to the presence of water. Further experiments will allow more accurate discrimination of unknown exposure environments. Nevertheless, the sensor will operate with high selectivity in low sweat body locations, like behind the ear or on the nails. 
    more » « less
  2. This paper presents sensor nanotechnologies that can be used for the skin-based gas “smelling” of disease. Skin testing may provide rapid and reliable results, using specific “fingerprints” or unique patterns for a variety of diseases and conditions. These can include metabolic diseases, such as diabetes and cholesterol-induced heart disease; neurological diseases, such as Alzheimer’s and Parkinson’s; quality of life conditions, such as obesity and sleep apnea; pulmonary diseases, such as cystic fibrosis, asthma, and chronic obstructive pulmonary disease; gastrointestinal tract diseases, such as irritable bowel syndrome and colitis; cancers, such as breast, lung, pancreatic, and colon cancers; infectious diseases, such as the flu and COVID-19; as well as diseases commonly found in ICU patients, such as urinary tract infections, pneumonia, and infections of the blood stream. Focusing on the most common gaseous biomarkers in breath and skin, which is nitric oxide and carbon monoxide, and certain abundant volatile organic compounds (acetone, isoprene, ammonia, alcohols, sulfides), it is argued here that effective discrimination between the diseases mentioned above is possible, by capturing the relative sensor output signals from the detection of each of these biomarkers and identifying the distinct breath print for each disease. 
    more » « less
  3. null (Ed.)
    The hexagonal WO3 polymorph, h-WO3, has attracted attention due to its interatomic channels, allowing for a greater degree of intercalation compared to other WO3 polymorphs. Our research group has previously demonstrated h-WO3 to be a highly sensitive gas sensing material for a flu biomarker, isoprene. In this work, the gas sensing performance of this polymorph has been further investigated in two distinct configurations of the material produced by different processing routes. The first sample was synthesized using Na2WO4·2H2O and showed (100) faceting. The second sample was synthesized using WCl6 and showed (001) faceting. The gas sensing response of the nanostructured films deposited using the (100) textured h-WO3 sample 1 had a higher response to acetone at 350 °C. The (001) textured h-WO3 sample 2 favored isoprene at 350 °C. The selectivity of the latter to isoprene is explained in terms of the dangling bonds present on the (001) facets. The tungsten and oxygen dangling bonds present on the (001) plane favor the adsorption of the isoprene molecule over that of the acetone molecule due to the oxygen containing dipole present in the acetone molecule. 
    more » « less